Was Wernicke Right?
Argye Hillis, M.D., Johns Hopkins University

Lesion-deficit association studies complement functional neuroimaging studies in identifying the neural basis for behaviors by revealing areas of brain essential for the task, rather than those that are merely engaged in a particular task. However, lesion studies sometimes appear to yield conflicting results about the necessity of a particular area for a given function. A case in point is the role of Wernicke’s area in auditory comprehension. I will review evidence for the role of Wernicke’s area in auditory word comprehension from previously published studies of patients with a variety of neurological diseases as well as evidence from functional neuroimaging. I will also present some new data from both acute and chronic stroke that bear on this topic. The preponderance of the data from these various sources converges in support of the hypothesis that Wernicke’s area (defined as left superior temporal gyrus and surrounding cortex in inferior parietal cortex and middle temporal gyrus) is one module in the ventral stream critical for accessing word meaning from spoken words. I use these data to illustrate how the convergence of different sources of lesion data can provide strong evidence for the role of a particular area in a given function. Finally, I provide recent data indicating that one role of Wernicke’s area is to link spoken words to their meanings.

The lecture will be held at Johns Hopkins University. However, it will be broadcast live to the University of South Carolina:

Room #140, Discovery I, 915 Greene Street, Columbia, SC 29208
Date: Thursday, March 2nd, Time: 2pm – 3pm EDT

The viewing event will be catered!

The lecture can also be followed online from your computer, tablet or smartphone, via the following GoToMeeting address (no password required): https://global.gotomeeting.com/join/667426173

You can also dial in using your phone.
United States : +1 (872) 240-3412
Access Code: 667-426-173